

31 October 2019

Eric Cornwell
Georgia Department of Natural Resources
Environmental Protection Division
Air Protection Branch
4244 International Parkway, Suite 120
Atlanta, Georgia 30354-3908

Dear Mr. Cornwell:

RE: SIP Permit Application

BD Covington

Air Quality Permit 3841-211-0021-S-0-04-0

Enclosed is a SIP application for our 8195 Industrial Blvd. Covington GA 30014 location. The application describes the additional voluntary emission controls we plan to install to reduce fugitive emissions of Ethylene Oxide. These emissions are not regulated by Subpart O (40 CFR 63.360).

If you have any questions or comments regarding this information, please contact me at (770) 652-2049.

Sincerely,

John LaMontagne

Process Technology Engineer

Urology and Critical Care Division Becton, Dickinson and Company

cc:

K. Hays, GA EPD

R. Pasdon

With Air Dispersion Modeling files. (USB Flash Drive)

Certified: 70092250000127474828

31 October 2019

Eric Cornwell
Georgia Department of Natural Resources
Environmental Protection Division
Air Protection Branch
4244 International Parkway, Suite 120
Atlanta, Georgia 30354-3908

Dear Mr. Cornwell:

RE: SIP Permit Application

BD Covington

Air Quality Permit 3841-211-0021-S-0-04-0

Enclosed is a SIP application for our 8195 Industrial Blvd. Covington GA 30014 location. The application describes the additional voluntary emission controls we plan to install to reduce fugitive emissions of Ethylene Oxide. These emissions are not regulated by Subpart O (40 CFR 63.360).

If you have any questions or comments regarding this information, please contact me at (770) 652-2049.

Sincerely,

John LaMontagne

Process Technology Engineer
Urology and Critical Care Division
Becton, Dickinson and Company

cc:

K. Hays, GA EPD

R. Pasdon

Without Air Dispersion Modeling files

Certified: 70092250000127474811

State of Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch

Stationary Source Permitting Program 4244 International Parkway, Suite 120 Atlanta, Georgia 30354 404/363-7000

Fax: 404/363-7100

SIP AIR PERMIT APPLICATION

FORM 1.00: (Application No.	N	(Krisense) Ess
	GENERAL INFORMATIO	N	
BD Covington			
04-13-217 - 00021 Street: 8195 Industrial Education City: Covington Dusiness" as defined in the interesting the street of the	Georgia Zip: 3001		wton
85° 36' 42" NORTH L EAST			
eton, Dickinson and Compareet: 1 Becton Drive r: Franklin Lakes	ny State: NJ		
784 6186 n.lamontagne@BD.com	Ext Fax No.	: _770 788 5519	Other:
et: 8195 Industrial Blvd. Covington	State: GA	Zip: _30014	
	et: _8195 Industrial Blvd. East	pusiness" as defined in the instructions? Yes: Bos 36' 42" NORTH Longitude: 83° 50' 17" NORTH EAST NORTH Coton, Dickinson and Company Beet: 1 Becton Drive Franklin Lakes State: NJ Id Mailing Address In LaMontagne Title: Process In LaMontagne@BD.com In eas: Facility Location: Bos State: State: Title: Sr.Operation Bos State: GA In accordance with the provisions of the Georgia Rules In accordance with the provisions of the Georgia Rules	Dusiness" as defined in the instructions? Yes: No: S B35° 36' 42" NORTH Longitude: 83° 50' 17" WEST EAST NORTH ZONE Cton, Dickinson and Company Bet: 1 Becton Drive Franklin Lakes State: NJ Zip: 0741 d Mailing Address In LaMontagne Title: Process Technology Engineer 784 6186 Ext. Fax No.: 770 788 5519 In lamontagne@BD.com In eas: Facility Location: Some Address: State: Zip: Title: Sr.Operations Mgr. Covington Bet: 8195 Industrial Blvd. Covington State: GA Zip: 30014 It in accordance with the provisions of the Georgia Rules for Air Quality Control

6.	☐ New	for Application: (Check all that apply) Facility (to be constructed) Revision of Data Submitted in an Earlier Application
		ting Facility (initial or modification application) Application No.:
	⊠ Pern	nit to Construct Date of Original
	⊠ Pern	nit to Operate Submittal:
	☐ Chai	nge of Location
	☐ Pern	nit to Modify Existing Equipment: Affected Permit No.:
7	Have any	exemption Activities (for permitted facilities only): exempt modifications based on emission level per Georgia Rule 391-3-103(6)(i)(3) been performed at the at have not been previously incorporated in a permit? Yes, please fill out the SIP Exemption Attachment (See Instructions for the attachment download)
8.	☐ No	stance been provided to you for any part of this application? Yes, SBAP Yes, a consultant has been employed or will be employed. Pase provide the following information:
		Consulting Company: Trinity Consultants
		Contact: Justin Fickas
	Telephone	
	Email Add	lress:
	Mailing Ad	ddress: Street: 3495 Piedmont Rd
		City: Atlanta State: GA Zip: 30305
		he Consultant's Involvement:
	Air Disp	ersion Modeling
9.	Submitte	Application Forms: Select only the necessary forms for the facility application that will be submitted.
	of Forms	Form
	1	2.00 Emission Unit List
		2.01 Boilers and Fuel Burning Equipment
		2.02 Storage Tank Physical Data
		2.03 Printing Operations
		2.04 Surface Coating Operations
		2.05 Waste Incinerators (solid/liquid waste destruction)
		2.06 Manufacturing and Operational Data
	1	3.00 Air Pollution Control Devices (APCD)
		3.01 Scrubbers
		3.02 Baghouses & Other Filter Collectors
	1	3.03 Electrostatic Precipitators
	1	4.00 Emissions Data
	1	5.00 Monitoring Information
	1	6.00 Fugitive Emission Sources 7.00 Air Modeling Information
	·	7.00 All Modelling Information
10	Construct	ion or Modification Date

Estimated Start Date: Construction estimated to start in December 2019

"Procedures for Requesting that Sub	bmitted in this application, were the mitted Information be treated as C	ne guidelines followed in the onfidential"?
12. New Facility Emissions Summary		
Criteria Pollutant		acility
	Potential (tpy)	Actual (tpy)
Carbon monoxide (CO)		
Nitrogen oxides (NOx)		
Particulate Matter (PM) (filterable only)		

Carbon monoxide (CO)	
Nitrogen oxides (NOx)	
Particulate Matter (PM) (filterable only)	
PM <10 microns (PM10)	
PM <2.5 microns (PM2.5)	
Sulfur dioxide (SO ₂)	
Volatile Organic Compounds (VOC)	
Greenhouse Gases (GHGs) (in CO2e)	
Total Hazardous Air Pollutants (HAPs)	
Individual HAPs Listed Below:	

13. Existing Facility Emissions Summary

Criteria Pollutant	Current	Facility	After Mod	dification
Official official	Potential (tpy)	Actual (tpy)	Potential (tpy)	Actual (tpy)
Carbon monoxide (CO)	27.77	2.98	27.77	2.98
Nitrogen oxides (NOx)	54.1	5.69	54.1	5.69
Particulate Matter (PM) (filterable only)	2.76	0.30	2.76	0.30
PM <10 microns (PM10)	2.76	0.30	2.76	0.30
PM <2.5 microns (PM2.5)	2.76	0.30	2.76	0.30
Sulfur dioxide (SO ₂)	5.02	0.50	5.02	0.50
Volatile Organic Compounds (VOC)	6.29	0.70	5.81	0.41
Greenhouse Gases (GHGs) (in CO2e)	30956	19734	30956	19734
Total Hazardous Air Pollutants (HAPs)	0.98	0.35	0.50	0.07
Individual HAPs Listed Below:				
Ethylene Oxide	0.5	0.3	0.019	0.014

14. 4-Digit Facility	Identification C	ode:	·		
SIC Code: 38	341	SIC Description:	Surgical & Medical	Instruments & Appara	atus
NAICS Code: 33	39112	NAICS Description:	Surgical and Medica	al Instrument Manufa	cturing
necessary, atta	ıch additional sh	ion process and ope eets to give an adeq erences should be m	uate description. In	clude lavout drawir	ngs, as necessary.
an existing medical of Exhaust Vent, Cham included in previous controls being install usage of EO will result Local Exhaust Ventil System One (SYS1)	device sterilization ber Vent, and Ae permit application ed to capture and ult from this propo- ation Systems: will capture poten	Emission Controls for on facility. The existing ration Exhaust are not as and will not be repet treat emissions not cosed fugitive emission that the emissions from the Transfer Corridor (NO	regulated process will being modified. Info ated here. This appliaptured by current co control project. The refive Sterilization Ve	hich includes the Ster ormation for these sys- ication is specific to a ontrol equipment. No in new controls will be conserved.	rilization Chamber stems has been additional emission increase in the omprised of two
Sterilization and prio	r to shipment. Re ons will be treated	ntial emissions from the ference Attachment Deference Attachment Deference Air Tefficiency.			
16. Additional info	mation provided	l in attachments as li	sted below:		
Attachment A -	Floor Plan				
Attachment B -	Plot Plan with p	roposed new stack loc	ations		
Attachment C -	System 1 Flow I				
Attachment D -	System 2 Flow I				
Attachment E -	Mass Balance C				
Attachment F -	Monitoring Reco	mmendations			
Attachment G -		echnologies DR-490 E	guipment Information	<u> </u>	
Attachment H -	Air Dispersion M		4		
17. Additional Infor		previously submitted	d. include the follow	ing two items:	
		on or date of previous		_	
	m or date of previ		chment C & D		
Waste Generatio	odification trigger	the need for environm andling, Water withdra	nental permits/approv wal, water discharge,	als (other than air) su SWPPP, mining, lan	uch as Hazardous idfill, etc.?

19. List requested permit limits including synthetic minor (SM) limits.

Proposed Permit Conditions

Permittee shall initially test performance of System1 (SYS1) and System2 (SYS2) to confirm ethylene oxide removal efficiency of at least 99% on a concentration basis within 60 days of commissioning of each system and within 60 days following any replacement of dry bed media.

Removal efficiency across each system (SYS1 and SYS2) shall be demonstrated on a concentration reduction basis using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode. During sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content, and calculation of mass emission rate of ethylene oxide.

Permittee shall sample the outlet from System1 (SYS1) and System2 (SYS2) once each month by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to determine concentration of ethylene oxide in the exhaust airflow stream.

Permittee shall track monthly concentration data versus baseline conditions and, in consultation with the dry bed manufacturer, determine when media replacement is warranted to maintain at least 99% removal efficiency.

20. Effective March 1, 2019, permit application fees will be assessed. The fee amount varies based on type of permit application. Application acknowledgement emails will be sent to the current registered fee contact in the GECO system. If fee contacts have changed, please list that below:

Fee Contact name:

Fee Contact email address:

Fee Contact phone number:

Fee invoices will be created through the GECO system shortly after the application is received. It is the applicant's responsibility to access the facility GECO account, generate the fee invoice, and submit payment within 10 days after notification.

Facility Name: BD Covington

Date of Application: 31 October 2019

FORM 2.00 - EMISSION UNIT LIST

VRM1 Vessel Room 1 N/A Dedicated Room for Sterilization Chamber 1 VRM3 Vessel Room 2 N/A Dedicated Room for Sterilization Chamber 2 VRM3 Vessel Room 4 N/A Dedicated Room for Sterilization Chamber 3 VRM4 Vessel Room 5 N/A Dedicated Room for Sterilization Chamber 4 VRM4 Vessel Room 5 N/A Dedicated Room for Sterilization Chamber 4 VRM5 Vessel Room 6 N/A Common confort of Sterilization Chamber 4 NCO1 Vessel Room 6 N/A Common confort of Sterilization Chamber 4 DRM1 EO Dispensing N/A Dedicated Room for Sterilization Chamber 3 WIP1 Work in Progress N/A Dedicated Room for Sterilization Chamber 4 WIP2 N/A Common confort balveen Vessel Room for Sterilization Chamber 4 WIP3 N/A Common for Dispensing EO from supply drums to each Chamber 3 MIP4 Work in Progress N/A Common for Dispensing EO from supply drums to each Chamber 4 MIP4 Work in Progress N/A Common for Dispensing EO from supply drums to each Chamber 4 MIP4	Emission Unit ID	Name	Manufacturer and Model Number	Description
Vessel Room 2 N/A Vessel Room 3 N/A Vessel Room 4 N/A Vessel Room 5 N/A Vessel Room 5 N/A Vessel Room 6 N/A Vossel Transfer N/A EO Dispensing N/A Work in Progress N/A	VRM1	Vessel Room 1	N/A	Dedicated Room for Sterilization Chamber 1
Vessel Room 3 N/A Vessel Room 4 N/A Vessel Room 5 N/A Vessel to Aeration Transfer N/A EO Dispensing Work in Progress N/A N/A	VRM2	Vessel Room 2	N/A	Dedicated Room for Sterilization Chamber 2
Vessel Room 4 N/A Vessel Room 5 N/A Vessel to Aeration Transfer N/A EO Dispensing Work in Progress N/A N/A	VRM3	Vessel Room 3	N/A	Dedicated Room for Sterilization Chamber 3
Vessel Room 5 Vessel to Aeration Transfer EO Dispensing Work in Progress N/A	VRM4	Vessel Room 4	N/A	Dedicated Room for Sterilization Chamber 4
Vessel to Aeration Transfer EO Dispensing Work in Progress N/A	VRM5	Vessel Room 5	N/A	Dedicated Room for Sterilization Chamber 5
Work in Progress N/A	NCO1	Vessel to Aeration Transfer	N/A	Common corridor between Vessel Rooms and Aeration Cells
Work in Progress N/A	DRM1	EO Dispensing	N/A	Dedicated Room for Dispensing EO from supply drums to each
	WIP1	Work in Progress	N/A	Common area where sterilized product is stored prior to

BD Covington

Facility Name:

z
잂
S
IS
발
뉟
誾
[입
訚
闸
崽
Ä
Ы
S
빙
닎
鬞
징
힖
5
힑
낊
4
8
ا ا
Form 3.00 - AIR POLLUTION CONTROL DEVICES - PART A: GENERAL EQUIPMENT INFORMATION

Date of Application: 31 October 2019

Inlet Gas	Flow Rate (acfm)	4,000-	4,000-	4,000-	4,000-	4,000-	3,000	1,000	64,000						
mp. °F	Outlet	02	02	70	70	70	70	70	0,2						
Gas Temp. °F	Inlet	0,2	70	02	02	22	20	20	70						
Unit Modified from Mfg	Specifications?	No	°N	No	No	N _O	No	No	No						
Make & Model Number	(Attach Mfg. Specifications & Literature)	Advanced Air Technologies, DR490													
Date	Installed	TBD	TBD	TBD	TBD	ТВD	TBD	TBD	TBD						
(Bachouse ESP	Scrubber etc)	Dry Beds													
Emission	מאהט	VRM1	VRM2	VRM3	VRM4	VRM5	NCO1	DRM1	WIP1						
APCD		SYS1	SYS2												

BD Covington Facility Name:

Date of Application: 31 October 2019 Form 3.00 - AIR POLLUTION CONTROL DEVICES - PART B: EMISSION INFORMATION

Ethylene Oxide 99% TBD 0.013 Mass Balance 0.00013 Mass Balance Ethylene Oxide 99% TBD 0.013 Mass Balance 0.00036* Mass Balance all Third that the table of t	APCD	Poliutants Controlled	Percent	Percent Control Efficiency	Inlet 5	Inlet Stream To APCD	Exit S	Exit Stream From APCD	Pressure Drop
Ethylene Oxide 99% TBD 0.013 Mass Balance 0.00013 Mass Balance Ethylene Oxide 99% TBD 0.36 Mass Balance 0.00367 Mass Balance In the control oxide An in the control oxide In the control oxide In the control oxide In the control oxide In the PTE) An in the PTE) In the control oxide In the pTE In the PTE In the PTE In the PTE In the control oxide In the pTE In the PTE In the PTE In the PTE In the control oxide In the pTE In the PTE In the PTE In the PTE In the control oxide In the pTE In the PTE In the PTE In the PTE In the control oxide In the pTE In the PTE In the PTE In the PTE In the control oxide In the PTE In the PTE In the PTE In the PTE In the control oxide In the PTE In the PTE In the PTE In the PTE In the control oxide <th>Cuttio</th> <th></th> <th>Design</th> <th>Actual</th> <th>lb/hr</th> <th>Method of Determination</th> <th>lb/hr</th> <th>Method of Determination</th> <th>(Inches of water)</th>	Cuttio		Design	Actual	lb/hr	Method of Determination	lb/hr	Method of Determination	(Inches of water)
Ethylene Oxide 99% TBD 0.36 Mass Balance 0.0036* Mass Balance This value was calculated using the facility's maximum sterification production rate at 8,780 hours per vear (i.e., the PTE).	SYS1	Ethylene Oxide	%66	TBD	0.013	Mass Balance	0.00013	Mass Balance	7
This value was calculated using the facility's maximum sterifization production rate at 8,760 hours per year (i.e., the PTE).	SYS2	Ethylene Oxide	%66	TBD	0.36	Mass Balance	0.0036*	Mass Balance	2
								*This value was calculated using the facility's maximum sterilization production rate at 8,760 hours per year (i.e., the PTE).	

Georgia SIP Application Form 3.00, rev. June 2005

×

Facility Name: BD Covington

Date of Application:

31 October 2019

FORM 4.00 - EMISSION INFORMATION

	Air Pollution					Emission Rates	tes	
Unit ID	Control Device ID	Stack	Pollutant Emitted	Hourly Actual Emissions (lb/hr)	Hourly Potential Emissions (lb/hr)	Actual Annual Emission (tov)	Potential Annual Emission	Method of Determination
VRM1	SYS1	STK1	Ethylene Oxide	0.000018	0.000018	0.00008	0.00008	Estimate
VRM1	SYS1	STK1	Ethylene Oxide	0.000018	0.000018	0.00008	0.00008	Estimate
VRM1	SYS1	STK1	Ethylene Oxide	0.000018	0.000018	0.00008	0.00008	Estimate
VRM1	SYS1	STK1	Ethylene Oxide	0.000018	0.000018	0.00008	0.00008	Estimate
VRM1	SYS1	STK1	Ethylene Oxide	0.000018	0.000018	0.00008	0.00008	Estimate
NCO1	SYS1	STK1	Ethylene Oxide	0.0000091	0.000013	0.000040	0.000055	Mass Balance
DMR1	SYS1	STK1	Ethylene Oxide	0.000023	0.000023	0.0001	0.0001	Estimate
WIP1	SYS2	STK2	Ethylene Oxide	0.0026	0.0036	0.012	0.016	Mass Bolonda

Facility Name:

BD Covington

Date of Application:

31 October 2019

FORM 5.00 MONITORING INFORMATION

Emission		Monitored Para	meter	
Unit ID/ APCD ID	Emission Unit/APCD Name	Parameter	Units	Monitoring Frequency
VRM1/SYS 1	Vessel Room1/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM2/SYS 1	Vessel Room2/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM3/SYS 1	Vessel Room3/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM4/SYS 1	Vessel Room4/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM5/SYS 1	Vessel Room5/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
NCO1/SYS 1	Vessel to Aeration Transfer/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
DMR1/SYS 1	EO Dispensing/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
WIP1/SYS2	Work in Progress/System2	EO Concentration at outlet of SYS2	ppm	Reference Attachment F

Co	m	me	ents	•

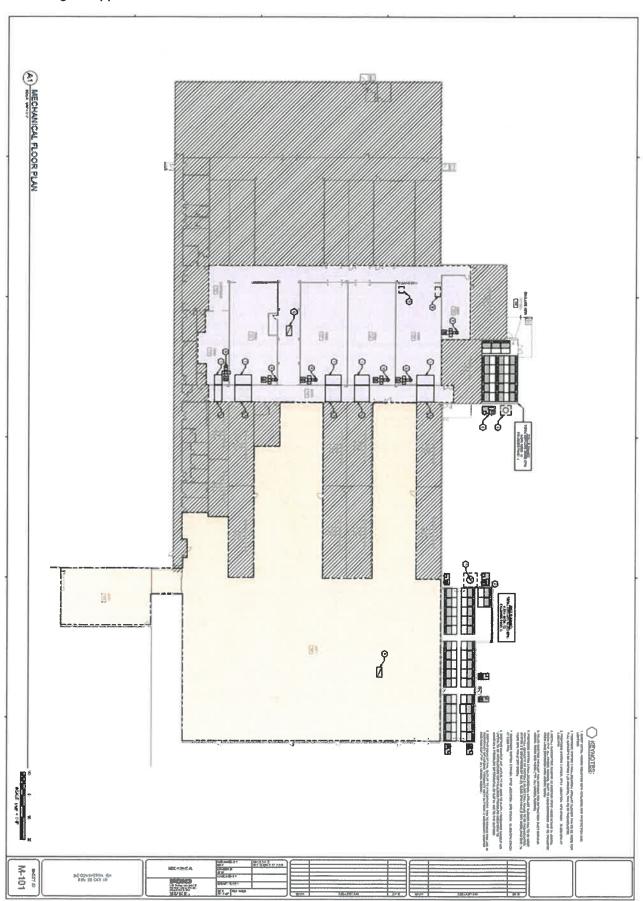
Monitoring detail described in attachment F

Facility Name: BD Covington

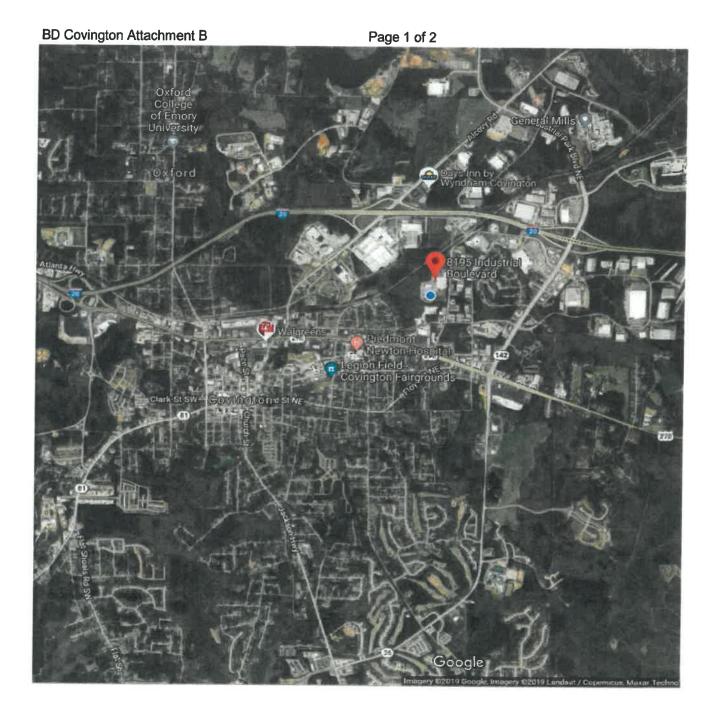
Date of Application:

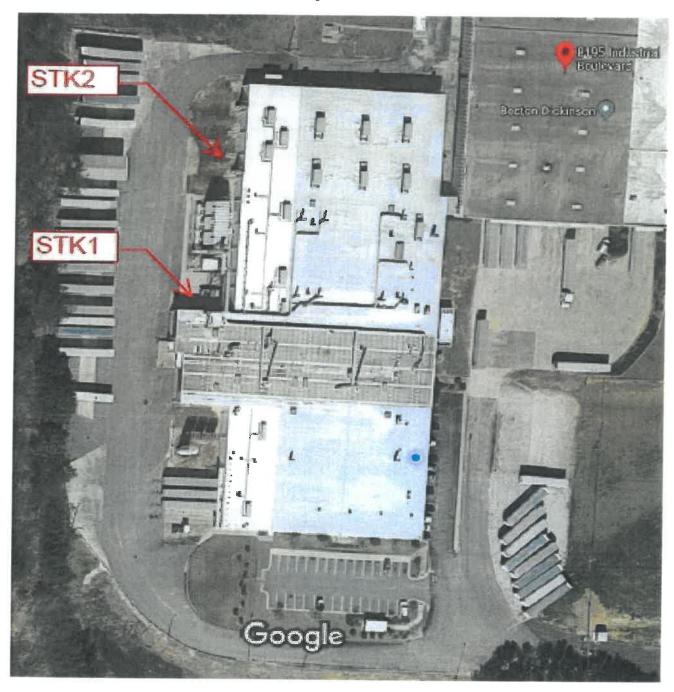
31 October 2019

FORM 7.00 - AIR MODELING INFORMATION: Stack Data


on Rate	Flow Rate (acfm)	Maximum	36,000	64.000						
aximum Emissk	Flow Ra	Average	21,000	64,000						
Exit Gas Conditions at Maximum Emission Rate	Temperature	(P)	02	02						
Exit G	Velocity	(ft/sec)	52	50.8						
Dimensions of largest Structure Near Stack	Longest	Side (ft)	20	50						
Dimension Structure	Height	€	30	30						
Ę	Exhaust	Direction	To the Sky	To the Sky						
Stack Information	Inside	(#)	3.83	5.17						
Sta	Height	Grade (ft)	100	100						
Fmission	Unit ID(s)		VRM1, VRM3, VRM4, VRM5, NCO1,	WIP1						
Stack	0		STK1	STK2						

NOTE: If emissions are not vented through a stack, describe point of discharge below and, if necessary, include an attachment. List the attachment in Form 1.00 General Information, Item 16.


Facility Name: BD Covington	Date of Application:	31 October 2019	
-----------------------------	----------------------	-----------------	--


FORM 7.00 AIR MODELING INFORMATION: Chemicals Data

Chemical	Potential Emission Rate (lb/hr)	Toxicity	Reference	MSDS Attached
Ethylene Oxide CAS#: 71-25-8	0.0044	PEL: 1ppm STEL: 5 ppm	OSHA 1910	
	F1			

Page 1 of 1

Attachment C

BD Covington SIP Application

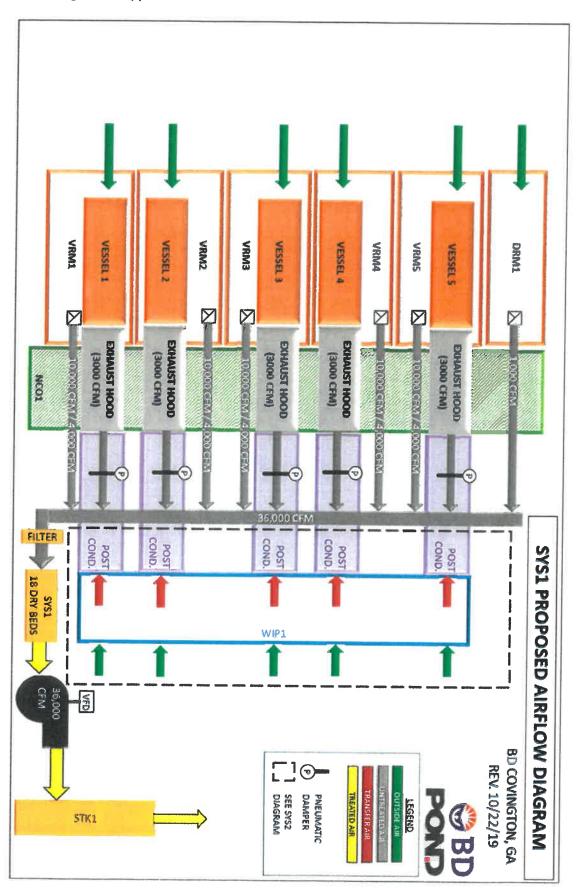
General Description

The intent of the mechanical systems design upgrade is to capture unregulated, fugitive Ethylene Oxide (EO) emissions inside the facility and reduce the potential for releases of these emissions to atmosphere. An effective means of containing emissions is to capture EO at the source. The capture and treatment systems will utilize pressure differential strategies. Using negatively pressurized spaces, extraction will direct air from the lowest EO concentrations to the highest concentrations in the building and then send this exhaust air through an EO destruction process. Existing exhaust fans (WIP1) will be replaced with a dedicated EO capture and destruction systems. Further, the shipping area will be enclosed. The new systems are designed to reduce captured emissions by 99% at the outlet.

System 1 Description/Flow Diagram

System One (SYS1) will capture potential emissions from the five Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5), the Vessel to Aeration Transfer Corridor (NCO1), and the EO Dispensing Room (DRM1). All SYS1 exhaust will be manifolded into a Dry Bed System with variable speed exhaust fan with a maximum capacity of 36,000 cfm. The system will maintain negative pressure, with respect to outside, in the Vessel Rooms, Vessel to Aeration Transfer Corridor, Drum Dispensing and use local ventilation exhaust to capture and destruct EO.

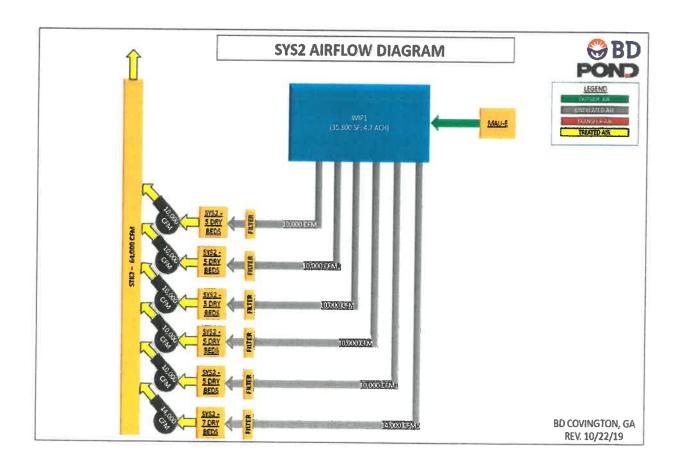
Normal Mode:


Vessel Rooms (VRM1-VRM5) will exhaust 4,000 cfm each, DMR1 will exhaust 1,000 cfm, NC01 hoods will be off. Total cfm = 21,000. The other Vessel rooms, DMR1, and NCO1 can increase cfm, to a total of 36,000 cfm, if monitoring equipment detects elevated EO levels.

Chamber Unloading Mode:

When a chamber is being unloaded the room exhaust will ramp to 10,000 cfm (all other vessel rooms will be at 4,000 cfm) the corresponding NCO1 hood will go to 3,000 cfm exhaust (all other hoods will be off). DMR1 will remain at 1,000 cfm. Total cfm = 30,000. The other Vessel rooms can increase cfm, to a total of 36,000 cfm, if monitoring equipment detects elevated EO levels.

Emergency Mode:


SYS1 will also incorporate a safety feature that will serve to shut down the system in the case of a major EO leak (≥25% of LEL or 7,500ppm). The AAT Dry Beds are designed for a maximum limit of 10,000 ppm and can ignite if overfed leading to potential fire or explosion. An EO sensor will be located in the SYS1 inlet duct and will activate a shutdown sequence based on an internal setpoint. EO emissions will not be captured in this emergency situation. This event will also trigger a sterilization process shutdown. It should be noted that BD has not experienced levels of this magnitude in its twenty-year history and this safety system is being included only to prevent a personnel injury in the event of a catastrophic failure.

Page 2 of 2

System 2 Description/Flow Diagram

System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored after Sterilization and prior to shipment. All SYS2 exhaust will be manifolded into a Dry Bed System with multiple variable speed exhaust fans for a maximum capacity of 64,000 cfm. The exhaust fans will be routed to a common Stack (STK2). The system will maintain negative pressure, with respect to outside, in the WIP1 area. The area pressure will be monitored with pressure sensors and fans will modulated to maintain a negative pressure in the space. Administrative controls will be implemented to ensure building integrity is preserved, doorways are managed, and air flows/pressures are maintained per design. The shipping area will be enclosed to aid in containment of emissions.

ATTACHMENT E	Page 1 of 2	-	
Becton, Dickinson and Company			
Mass Balance Calculations for SIP Application (PTE) Facility: Covington, GA			
Input data:		1000	
Ethylene oxide usage	534,000	1	Total usage based on Mass Balance
Sterilizer removal efficency ¹	99.99	6	Based on partial pressure calculation estimate
RTO efficiency, aeration	99.970%	6	Based on 2019 Performance Testing
RTO efficiency, vessels	99.999%	6	Based on 2019 Performance Testing
Product transfer time, sterilizer to aeration		min	
Aeration time	16	hr	
Aeration Unload time		min	
System 1 removal efficiency	99%		Assume 99% Based on vendor literature
system 2 removal efficiency	99%		Assume 99% Based on vendor literature
,	3370	-	
System 2 Safety Factor	4.00		Safety factor included to account for variation in future products and products
Assumptions:	Charles and America		density which may impact EO residuals.
Product absorption ²	0.400		
O degassing rate constant, k ³	0.4%		
Aiscellaneous fugitive loss	0.06151	-	
Auscenatieous rugitive ioss	100	lb	captured in system 1
Calculations:		Water State	
terilizer:			
terilizer: O into sterilizers			
	533,900		Total usage based on Mass Balance minus miscellaneous fugitive loss
O absorbed by product	2,135.6		
O in sterilizer not absorbed by product	531,764.4		
O exhausted to RTO from vac/air wash	531,232.6	lþ	
O exhausted to RTO from vent	531.8	lb	
terilizer exhaust to RTO	531,764.4	ib	
terilizer exhaust removed by RTO	531,759.1	lb .	
terilizer exhaust to atmosphere after RTO	5.3	lb	
ransfer:			
			EO will off-gas from products during aeration per equation: $C = C_o e^{(-kl)}$, wh
O offgas during product transfer to aeration			C = Final EO concentration, C _o = EO concentration at time 0, k = EO degassi
O offgas during product transfer to aeration O offgas during product transfer to aeration	0.51%		rate constant, and t = degassing time in hrs.
	10.9	ID	This will be captured by system one
eration:			
O remaining in product entering aeration	2,124.7	lb	
ffgas during aeration	62.6%		
ffgas during unloading	0.0		
O offgas during aeration	1,330.6	lb	
RTO during aeration	1,330.6	lb	
RTO during aeration unload	8.1	lb	
otal aeration to RTO	1,338.7	lb	
eration removed by RTO	1,338.3		
eration exhaust to atmosphere after RTO	0.4		
stem1:			
to System 1	110.9	lh	
emoved by System 1	0.0000		
stem 1 exhaust to atmosphere	109.8	IU	
stem2:	1.1		
to System 2			
7	3,144.0		Includes System 2 Safety Factor
moved by System 2	3,112.6	b	
stem 2 exhaust to atmosphere	31.4		
hausted before Modification:			
exhausted to atmosphere from RTO	5.7 [
Exhausted to atmosphere by system 1	110.9	b	
Exhausted by to atmosphere System 2	786.0 I	b	Does not include Safety Factor ⁵
tal EO exhausted to atmosphere	902.6	b	Before Modifications
	0.5 7	ons	
hausted after Modification;			
exhausted to atmosphere from RTO			
Exhausted to atmosphere from RTO	5.7		
	1.1		
Exhausted by to atmosphere System 2	31.4		Does include Safety Factor
tal EO exhausted to atmosphere	38.3 II		
	0.019 T	ons	After Modifications
te 1 This estimates how much EO is removed during	post exposure vacuum	washes but	does not include what is in the product at the time it transfers to Aeration
te 2 Estimates the amount of EO in the product whe	n it starts the transfer to	o aeration	
te 3 An estimate based on Product EO Residue Testi	ng performed by BD lab	oratory pers	onnel.
te 4 An estimate of potential EO emissions from pur	np/valve packaging, flan	ge losses. E	Supply drum changes, and non-routine losses
			es the new System is designed to account for variation in future products and

ATTACHMENT E	Page 2 of 2		
Becton, Dickinson and Company			
Mass Balance Calculations for SIP Application (Actual)			
Facility: Covington, GA			
Input data:		The state of the state of	
Ethylene oxide usage	390,400	lb/yr	Total usage based on Mass Balance (CY 2018)
Sterilizer removal efficency ¹	99.9%	6	Based on partial pressure calculation estimate
RTO efficiency, aeration	99.970%	6	Based on 2019 Performance Testing
RTO efficiency, vessels	99.999%	5	Based on 2019 Performance Testing
Product transfer time, sterilizer to aeration	5	min	
Aeration time	16	hr	
Aeration Unload time	10	min	
System 1 removal efficiency	99%		Assume 99% Based on vendor literature
System 2 removal efficiency	99%		Assume 99% Based on vendor literature
			Safety factor included to account for variation in future products and product
System 2 Safety Factor	4.00	1	density which may impact EO residuals.
Assumptions:	MILITARY SK. FIR	DUDONAS.	
Product absorption ²	0.4%		
EO degassing rate constant, k ³			
Miscellaneous fugitive loss	0.06151		
whisterial reputs to gittive loss	100	lb	captured in system 1
Calculations:			
Sterilizer:			
EO into sterilizers	390,300	lb	Total usage based on Mass Balance minus miscellaneous fugitive loss
EO absorbed by product	1,561.2	lb	
EO in sterilizer not absorbed by product	388,738.8		
EO exhausted to RTO from vac/air wash	388,350.1		
EO exhausted to RTO from vent	388.7		
Sterilizer exhaust to RTO	388,738.8	lb	
Sterilizer exhaust removed by RTO	388,734.9		
Sterilizer exhaust to atmosphere after RTO	3.9		
Fransfer:		10	
			EO will off-gas from products during aeration per equation: $C = C_0 e^{[-kt]}$, where
			Final EO concentration, $C_o = EO$ concentration at time 0, $k = EO$ degassing rate
O offgas during product transfer to aeration	0.51%		constant, and t = degassing time in hrs.
O offgas during product transfer to aeration	8.0	lb	This will be captured by system one
Aeration:			
O remaining in product entering aeration	1,553.2	lb	
Offgas during aeration	62.6%		
Offgas during unloading	1.0%		
O offgas during aeration	972.7	lb	
o RTO during aeration	972.7	lb	
o RTO during aeration unload	5.9	lb	
otal aeration to RTO	978.6		
Aeration removed by RTO	978.3		
eration exhaust to atmosphere after RTO	0.3		
ystem1:			
nto System 1	108.0	lh	
emoved by System 1	106.9		
ystem 1 exhaust to atmosphere		IIV	
ystem 1 exhaust to atmosphere ystem2:	1.1		
nto System 2	0.000	L	
	2,298.4		Includes System 2 Safety Factor
emoved by System 2	2,275.4	D	
ystem 2 exhaust to atmosphere	23.0		
Nh			
xhausted before Modification:			
O exhausted to atmosphere from RTO	4.2	b	
O Exhausted to atmosphere by system 1	108.0	b	
O Exhausted by to atmosphere System 2	574.6 I	b	Does not Includes System 2 Safety Factor ⁵
otal EO exhausted to atmosphere	686.8	b	Before Modifications
	0.3	Tons	
khausted after Modification:			
O exhausted to atmosphere from RTO	4.2 1	b	
O Exhausted to atmosphere by system 1	1.1		
D Exhausted by to atmosphere System 2	23.0 I		Includes System 2 Safety Factor
otal EO exhausted to atmosphere	28.2		
	0.014 1		After Modifications
	0.024	-110	CAST THE WILLIAM STATE OF THE S
Ote 1 This estimates how much FO is removed during			
This estimates flow flacing to is removed during	post exposure vacuum	washes but	does not include what is in the product at the time it transfers to Aeration
ote 2 Estimates the amount of EO in the product wher	it starts the transfer t	o aeration	
ote 3 An estimate based on Product EO Residue Testin	g performed by BD lab	oratory pers	sonnel.
ote 4 An estimate of potential EO emissions from pum			
The Cofety Coston in and included in the S.C S.C.	diffication calculations	as this incom	res the new System is designed to account for variation in future products and produc
THE SAIRLY PACTOR IS DOIN INCIDED IN THE AMERICA			

Attachment F

BD Covington SIP Application

BD has not identified an US EPA- or GA EPD-approved stack test method that will measure the concentrations of unregulated, fugitive emissions of ethylene oxide (EO), which are expected to be less than 0.2 ppm, that will enter the dry systems' inlets or the resulting, reduced concentrations of EO at the dry bed systems' outlets or the combined stacks.¹ For these reasons, BD proposes to demonstrate the control efficiency of the dry bed systems using the following sample collection and analysis methods, which are based EPA Method TO-15.

Based upon available information, BD anticipates that the ethylene oxide (EO) concentrations at the inlet and outlet of the proposed systems will be relatively low (i.e., typically less than 0.2 ppmv) and essentially not reliably detected by standard EPA stack testing methods (e.g., EPA Method No. 18). To overcome this limitation, the approach described below employs a gas sampling technique capable of achieving lower detection limits.

When the inlet and outlet concentrations are close to the limits of detection of the analytical equipment it becomes mathematically impossible to prove the specified destruction efficiency. We are currently investigating monitoring technologies and methods that would allow practical measurement of the relatively low levels of EO expected at the outlet of the proposed emission systems with the intent to be able to confirm a 99% reduction or an equivalent emission standard. BD welcomes any alternate sample/analysis methods may be that GA EPD may recommend.

BD proposes that the initial compliance tests and subsequent monthly monitoring of System1 and System2 as follows:

Initial Compliance Testing:

- Demonstrate 99% ethylene oxide removal efficiency of the dry bed systems across each control System using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode.
- During this sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content.

¹ Advanced Air Technologies, Inc. (AAT), the manufacturer of the dry bed systems, has claimed that that emissions "of EtO will be 99% or = 1 ppmv, whichever is less stringent, when operated per AAT operations manual and other parameters of project design." BD has based its calculations of the removal of unregulated, fugitive EO emissions on AAT's manufacturer's claims. To its knowledge, BD's installation of the AAT dry bed systems to control EO in the concentrations found in the unregulated, fugitive emissions of the substance at the Covington plant is the first such installation anywhere. BD, nonetheless, believes that the dry bed systems will reduce the unregulated, fugitive emissions of EO by 99%.

- Using the above-measured airflow and concentration data, the mass emission rate from each System will be calculated and reported.
- These data will be used to establish baseline conditions against which subsequent monitoring data (collected as described below) will be considered in determining when media replacement should be initiated.

This compliance testing regime will be repeated after completion of any future media replacement.

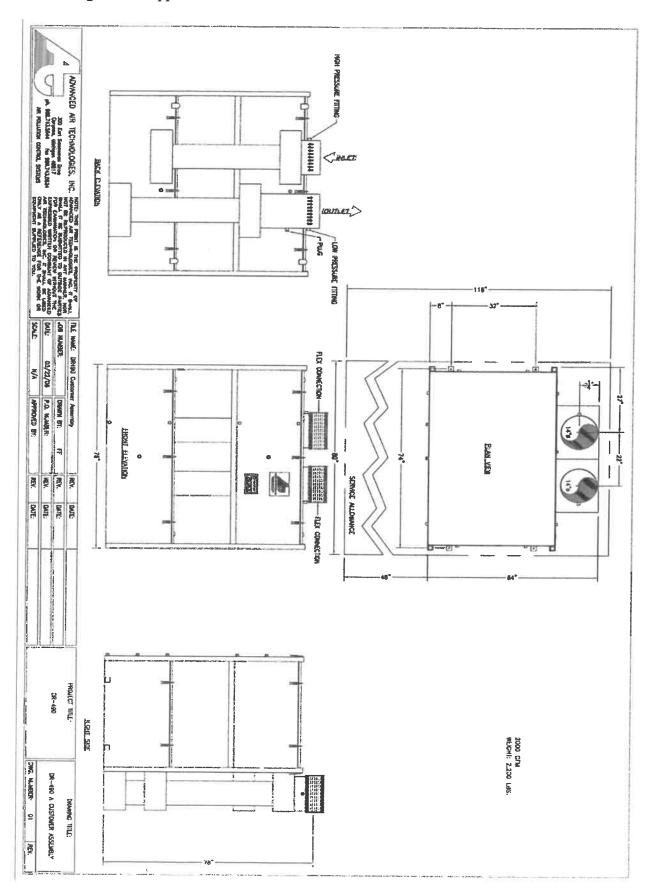
Routine Monitoring:

- Sample the outlet from each dry bed system on a monthly basis by Summa Canisters using EPA
 Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode
 and determine concentration of ethylene oxide in the exhaust airflow stream.
- Monthly concentration data will be tracked and compared with baseline data.
- Trending of the monthly concentration data versus baseline will be used in consultation with the dry bed manufacturer to determine when media replacement is warranted to maintain at least 99% removal efficiency.

The abatement method is chemisorption (adsorption accompanied by chemical reaction) by means of Advanced Air Technology dry beds containing sulfonated polymer of styrene. Once the chemisorption process has occurred, the amount of EO is reduced by at least 99%. See table below:

ISO 9001: 2008 Certified

ADVANCED AIR TECHNOLOGIES, INC.


300 Earl Sleeseman Drive Corunna, MI 48817 (Michigan - USA)


Phone: 989-743-5544 Fax: 989-743-5624

Toll Free: 800-295-6583

AAT, INC. DR-490 ETHYLENE OXIDE ABATOR REMOVAL EFFICIENCY DECAY (BASED ON 2000 SCFM AIR FLOW RATE)

lb. EtO Treated/lb. Reactant	lb. EtO Previously Treated	EtO % Removal Efficiency
0	0	99.995
0.05	45	99.97
0.10	90	99.95
0.15	135	99.92
0.20	180	99.9
0.25	225	99,5
0.30	270	99
0.35	315	98
0.40	360	97
0.45	405	95
0.50	450	85
0.52	468	0

ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT

BD > Covington Facility

Prepared By:

TRINITY CONSULTANTS

October 2019

Project 191101.0218

Environmental solutions delivered uncommonly well

1. ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT

EPD regulates the emissions of toxic air pollutants (TAPs) through a program approved under the provisions of GRAQC Rule 391-3-1-.02(2)(a)3(ii). A TAP is defined as any substance that may have an adverse effect on public health, excluding any specific substance that is covered by a State or Federal ambient air quality standard. Procedures governing the EPD's review of toxic air pollutant emissions as part of air permit reviews are contained in EPD's Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions (the Guideline).1

This assessment included dispersion modeling for ethylene oxide from the facility.

1.1. MODELING ASSESSMENT

Modeling conducted was done with the AERMOD (v19191) dispersion model. Meteorological data utilized for the modeling assessment was obtained from the Georgia EPD website. Meteorological data utilized was processed using AERMET (v18081), AERSURFACE (v13016), and AERMINUTE (v15272) with the adjusted surface friction velocity option (ADJ_U*). Five consecutive years of meteorological data (2014-2018) were utilized in the modeling assessment, with surface meteorological data from the Atlanta Hartsfield Jackson airport and upper air data from Falcon Field in Peachtree City, Georgia. This assessment was performed in accordance with the *Guideline*.

1.1.1. Source Parameters

Ethylene oxide emissions were modeled as point sources from three specific facility stack locations. For point sources, AERMOD requires the stack height (m), inside stack exit diameter (m), temperature (K), and exit gas velocity (m/s) to be specified. Table 1-1 provides a summary of the location and stack parameters used in the dispersion model for the point sources. The modeled emission rates reflect the current DRE for the RTO (incinerator) at the Covington plant, and assume a 99% reduction of all fugitive emissions of EtO from the plant, which reflects the performance of the dry bed filters proposed in the permit application for which this modeling was performed.

¹ Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions. Georgia Department of Natural Resources, Environmental Protection Division, Air Protection Branch, Revised, May 2017.

² https://epd.georgia.gov/air-protection-branch-technical-guidance-0/air-quality-modeling/georgia-aermet-meteorological-data

BD | Ethylene Oxide Emissions Impact Assessment

Table 1-1. Point Source Parameters

Г		5		T	j	Γ		Г
	Chal	Diamoton	Diameter III	0101	617:1	1100	1.10/	1 575
	Stack Diamotor	(in)	(III)	бУ	04	71/	7.0	69
	Flow		(cum)	23.000	23,000	21000	41,000	64.000
	Exit Velocity	(m/s)	(e /m)	929	/41/	0.73	/um/	15.48
		(B/s)		30.5		303		20.8
Stack	Temperature	Ø	(2)	394.26		294.26		294.26
Stack	Temperature			720		92		22
	Stack Height	Œ		15.24		30.48		30.48
	Stack Height	(£)	l	20		001	l	100
	Modeled	Emissions (g/s)		8.21E-05	10000	L.376-U5	1 700 01	4.52E-04
Modeled	Emissions	(lb/hr)	10000	6.51E-04	4 277 04	FU-202.1	2 505 03	3.30E-U3
Modeled	Emissions	(lb/yr)	;	3.7		I'I	24.4	9T'4
		Northing (meter)	2 777 200 0	0,062,221,6	27727722	3,144,413.3	2 722 212 7	3,144,313.1
		Easting (meter)	732 4747	7'474'007	226.404.2	2.707,002	736.473.6	いたみずいひろ
		Source	DTO		Cuetom 1	Digital T	Cretom 2	James C

1.1.2. Land Use Classification

Classification of land use in the immediate area surrounding a facility is important in determining the appropriate dispersion coefficients to select for a particular modeling application. The selection of either rural or urban dispersion coefficients for a specific application should follow one of two procedures. These include a land use classification procedure or a population-based procedure to determine whether the area is primarily urban or rural.³

Of the two methods, the land use procedure is considered more definitive. The land use within the total area circumscribed by a 3-kilometer (km) radius circle around the facility was classified using the land use typing scheme proposed by Auer. If land use types I1 (Heavy Industrial), I2 (Light Industrial), C1 (Commercial), R2 (Residential; Small Lot Single Family & Duplex), and R3 (Residential; Multi-Family) account for 50% or more of the circumscribed area, urban dispersion coefficients should be used; otherwise, rural dispersion coefficients are appropriate.

AERSURFACE (v13016) was used for the extraction of the land-use values in the domain. The results of the land use analysis evaluation were as follows.

Each USGS NLCD92 land use class was compared to the most appropriate Auer land use category to quantify the total urban and rural area. Table 1-2 summarizes the results of this land use analysis. As approximately 93.7% of the area can be classified as rural, rural dispersion coefficients were used. The AERSURFACE files are enclosed in Appendix A.

³ 40 CFR Part 51, Appendix W, the Guideline on Air Quality Models (January 2017) – Section 7.2.1.1(b)(i) BD | Ethylene Oxide Emissions Impact Assessment

Table 1-2. Summary of Land Use Analysis

USGS NLCD92			Auer Scheme	Rural/ Urban	Land
Land Class	Land Class Description	Land Use Type	Land Use Description	Urban	Area
11	Open Water	A5	Water Surfaces/Rivers/Lakes	Rural	0.8%
12	Perennial Ice/Snow	A5	Water Surfaces/Rivers/Lakes	Rural	0.0%
21	Low Intensity Residential	R1	Common Residential	Rural	7.8%
22	High Intensity Residential	R2 and R3	Compact Residential (Single Family, Multi-Family & Duplex)	Urban	0.9%
23	Commercial/Industrial/ Transportation	I1, I2, and C1	Heavy and Light-Moderate Industrial & Commercial	Urban	5.4%
31	Bare Rock/Sand/Clay	А3	Undeveloped	Rural	0.0%
32	Quarries/Strip Mines/Gravel	A4	Undeveloped Rural	Rural	0.2%
33	Transitional	A3	Undeveloped/Uncultivated	Rural	1.8%
41	Deciduous Forest	A4	Undeveloped Rural	Rural	29.1%
42	Evergreen Forest	A4	Undeveloped Rural	Rural	19.9%
43	Mixed Forest	A4	Undeveloped Rural	Rural	13.2%
51	Shrubland	A3	Undeveloped/Uncultivated	Rural	0.0%
61	Orchards/Vineyard/Other	A2	Agricultural Rural	Rural	0.0%
71	Grasslands/Herbaceous	А3	Undeveloped/Uncultivated	Rural	0.0%
81	Pasture/Hay	A2	Agricultural Rural	Rural	7.0%
82	Row Crops	A2	Agricultural Rural	Rural	3.8%
83	Small Grains	A2	Agricultural Rural	Rural	0.0%
84	Fallow	A2	Agricultural Rural	Rural	0.0%
85	Urban/Recreational Grasses	A1	Metropolitan Natural	Rural	2.5%
91	Woody Wetlands	A4	Undeveloped Rural	Rural	7.6%
92	Emergent Herbaceous Wetlands	A4	Undeveloped Rural	Rural	0.2%

1.1.3. Building Downwash

The effects of building downwash for each of the stack emission points were evaluated in terms of the proximity of the stack to nearby structures. The purpose of this evaluation is to determine if stack discharges might become caught in the turbulent wakes of these structures leading to downwash of the plumes. Wind blowing around a building creates zones of turbulence that are greater than if the building were absent.

Attachment H

BD Covington SIP Application

For these modeling analyses, the direction-specific building dimensions used as input to the AERMOD model were calculated using the U.S. EPA's BPIP PRIME, version 04274. BPIP PRIME is designed to incorporate the concepts and procedures expressed in the GEP Technical Support document, the Building Downwash Guidance document, and other related documents.⁴

For the BPIP analysis, the structure elevations (buildings and stacks) were estimating using the AERMAP processor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of emission points and structures were represented in the UTM coordinate system, zone 17, NAD 83.

EPA has promulgated stack height regulations that restrict the use of stack heights in excess of "Good Engineering Practice" (GEP) in air dispersion modeling analyses. Under these regulations, that portion of a stack in excess of the GEP height is generally not creditable when modeling to determine source impacts. This essentially prevents the use of excessively tall stacks to reduce ground-level pollutant concentrations.

This equation is limited to stacks located within five times the lesser dimension (5L) of a building structure. Stacks located at a distance greater than 5L from a building structure are not subject to the wake effects of the structure. The wind direction-specific downwash dimensions and the dominant downwash structures used in this analysis are determined using BPIP. In general, the lowest GEP stack height for any source is 65 meters by default.⁵ The BPIP evaluation indicates that none of the facility emission unit stacks exceed GEP stack height.

Input and output files from the BPIP downwash analysis are provided in the electronic files included in Appendix A.

1.1.4. Receptor Grid Coordinate System

Modeled concentrations were calculated at ground-level receptors placed along the facility fenceline and on a variable Cartesian receptor grid. Fenceline receptors were spaced no more than 25 meters apart. Beyond the fenceline, receptors were placed with 100 meters spacing on a Cartesian grid extending outward from the facility. An approximately 25 km by 25 km modeling domain with a receptor spacing of 100 meters was created.

Also, five residential receptors, as identified in a modeling memo prepared by the Georgia Environmental Protection Division (EPD) in June 2019, were also placed within the receptor grid system to provide predicted modeled impacts consistent with the results presented by the EPD in their June 2019 memo. ⁶

Receptor elevations and hill heights required by AERMOD were determined using the AERMAP terrain preprocessor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of receptors were represented in the UTM coordinate system, zone 17, NAD 83.

⁴ U.S. EPA, Office of Air Quality Planning and Standards, Guidelines for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (Revised), Research Triangle Park, North Carolina, EPA 450/4-80-023R, June 1985.

^{5 40} CFR 51.100(ii)

⁶ https://epd.georgia.gov/bd-becton-dickinson-and-company-covington BD | Ethylene Oxide Emissions Impact Assessment

1.1.5. Modeling Results

Using the source parameters specified in Table 1-1, and additional model setup as described above, AERMOD was executed for each of the five years of meteorological data to determine the maximum predicted modeled 1-hr and annual concentrations of ethylene oxide at each receptor location. Table 1-3 below summarizes the MGLC for each averaging period. Hourly concentrations were adjusted to a 15-min averaging period based on the *Guideline* (15-min MGLC = 1-hr MGLC * 1.32).

Year	Max Annual Concentration (μg/m³)	Annual AAC (μg/m³)	Max Hourly Concentration (μg/m³)	Max 15-min Concentration (μg/m³)	15-minute AAC (μg/m³)
2014 2015 2016 2017 2018	6.0E-04 5.3E-04 5.4E-04 4.6E-04 5.5E-04	3.3E-04	0.29 0.03 0.03 0.04 0.05	0.38 0.04 0.04 0.05 0.06	900

Table 1-3. Maximum Predicted Modeled Impacts

While maximum predicted modeled impacts exceed the annual AAC, the locations where the annual AAC are exceeded are limited to locations in much closer proximity to the facility when compared to modeling conducted by the Georgia EPD for their June 7th, 2019 modeling memo. The distance from the facility at which the model predicts exceedances of the annual AAC has been reduced by approximately 95% due to the proposed changes. The magnitude of the predicted modeled annual impacts have been reduced more than 99.5% when compared to modeling conducted by the Georgia EPD for their June 7th, 2019 modeling memo.

Analyses were also conducted to evaluate predicted modeled impacts at each of five identified residential receptors by the Georgia EPD. Table 1-3 below summarizes the annual average maximum predicted modeled impacts at the five residential receptor locations previously identified by the Georgia EPD.

Residential Area	Easting (meter)	Northing (meter)	Max Annual Concentration (μg/m³)	Averaging Period	Annual AAC (μg/m³)	Ratio of Result to AAC
R1	236,932.5	3,722,361.2	2.7E-04	Annual	3.3E-04	0.82
R2	236,137.9	3,721,995.0	1.3E-04	Annual	3.3E-04	0.39
R3	236,163.0	3,721,885.6	8.0E-05	Annual	3.3E-04	0.24
R4	237,343.8	3,721,603.8	2.2E-04	Annual	3.3E-04	0.67
R5	235,611.0	3,722,319.2	2.5E-04	Annual	3.3E-04	0.76

Table 1-4. Maximum Predicted Modeled Impacts at EPD Identified Residential Receptors

All air dispersion modeling files are included in Appendix A.

APPENDIX A. ELECTRONIC TOXICS MODELING FILES